## NEURAL NET TRACKING CONTROL OF A MOBILE PLATFORM IN ROBOTIZED WIRELESS SENSOR NETWORKS

Sevil Ahmed, Nikola Shakev, Lilyana Milusheva, Andon Topalov

Department of Control Systems, Technical University–Sofia, Branch Plovdiv 25 Tsanko Djustabanov St., 4000 Plovdiv, BULGARIA







## Introduction

- Prototyping the robotized sensor nodes
- The neural net trajectory tracking control approach
- The experiment
- Future work



### What is WSN?



- Distributed autonomous sensors - nodes
- Large number of nodes
- Collective data logging and transmission



**Applications** 

- Monitoring environmental parameters
- Machine health monitoring
- Industrial process monitoring and control







# The trend - inclusion of mobile robots into the WSN structure!

- Provide flexibility with respect to the installation of the network sensors, thereby to allow active (not passive) information gathering
- If necessary, robots can perform desired or based on real-time observations interaction with the environment

### Sensor node components:



**The communication:** two independent WiFi communication channels

6 17

- Local area network
- MQTT based communication

A. The Nonholonomic Mobile Robot iRobot Create



- Open interface
- Hardware expansion possibility

- Built-in sensors
- Differential-drive

**B.** The Embedded Microprocessor verdex pro<sup>™</sup> XL6P COM



Hardware:

Sticky interface

8 | 17

- Netpro-vx
- FCC WiFi module

### Software:

 OE Linux - Angstrom distribution



9-axis MEMS motion tracking; 3-axis gyro; 3-axis accelerometer; 3-axis compass; pressure sensor; humidity and ambient temperature sensor; ambient and infrared light sensor; non-contact infrared temperature sensor

9|17

### The mobile sensor node



Tiva<sup>™</sup> C Series
 TM4C1294NCPDT
 LaunchPad

- WiFi CC3100 Booster
  Pack
- TI Sensor Hub
- Gumstix verdex stack



# NN trajectory tracking control structure

# The neural net structure

11 | 17



The neural net trajectory tracking control approach

### The neural net structure

### The neural net structure

12 | 17





### Scenario



 Detect any light source above the robot during the trajectory tracking performance

- Exact trajectory tracking
- Continuous sensor reading



14 | 17

# A. Trajectory tracking performance





| Controller          | Learning rate | Neurons in the | Initial weights |
|---------------------|---------------|----------------|-----------------|
|                     |               | hidden layer   |                 |
| Velocity controller | 300           | 5              | 10-3÷1          |
| Orientation angle   | 0.75          | 7              | 10-3÷1          |
| controller          |               |                |                 |



### The experiment

## B. Sensor Reading and Data Broadcasting

 MQTT broker through iot.eclipse.org:1883

 MQTT broker through iot.eclipse.org:1883

#### 18:41 0 Dashboard MQTT Ŵ **28** Received Messages Source detected!...Light level (in Lux) = 306.55 mysensor Source detected!...Light level (in Lux) = 306.55 mysensor Source detected!...Light level (in Lux) = 296.40 mysensor Source searching...Light level (in Lux) = 264.30 mysensor



16 | 17



#### ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support provided within the Ministry of Education and Science of Bulgaria Research Fund Project FNI I 02/6.





## Thank you for your attention!