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Surface reconstruction

» The surface reconstruction problem consists in the search of
the surface that best describes a given set of points.
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Surface reconstruction

» The surface reconstruction problem consists in the search of
the surface that best describes a given set of points.

» In computational intelligence field:
» surface reconstruction — function approximation / regression

» point cloud — examples
» surface — generalization
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3D Models

> 3D models are used in many applications

> Archeology / Art
> Medical

» Training

» Entertainment

» Virtual fashion

> Reverse engineering
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3D reconstruction pipeline
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3D Surface Reconstruction

Several features characterize the
reconstruction problem:

» the inherent structure of the
data (e.g., contour) can be
easily incorporated in the
model;

» the topology of the surface
should be known a-priori or
can be obtained from
enough dense data;

> the class of the object:
model-based reconstruction.
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Computational Intelligence approaches
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Self-Organizing Maps

» SOMs provide a smooth mapping of similar examples.

» The topological structure can be used as mesh for
surface representation.

» Particular attention has to be paid to the problem of
distributing the SOM units on the boundary of the
training set.
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Self-Organizing Maps (2)

» Dense SOM can generate unrealistic meshes.

» Pruning and iterative adaptation provide better results:
» removing of unstable vertices;

» subdivision of large triangles and refinement.

3D Surface Reconstruction
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Self-Organizing Maps (3)

» Ruled surfaces are commonly used in
CAD.

» Each 3D points line is transformed in
a 6-dimensional point that describes
the line;

» in that 6D space, the SOM is trained;

» the backward transformation allows to

obtain the ordered set of lines that
defines the surface.
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FOSART

» Clustering provides filtering through local averaging.

» Topology preserving algorithms limits the averaging
only on similar points.

» Fully self-organizing simplified adaptive resonance
theory (FOSART) has been used for filtering a dense
3D point cloud affected by noise.
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Enhanced Vector Quantization

» Extension of the Neural-Gas model:

» optimized for low dimensionality spaces;
> linear scaling and parallelizable.
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Fuzzy k-means

Use of computational intelligence techniques as
intermediate step.

Segmentation of normals of the surfaces points through
fuzzy k-means clustering;

v

v

v

description of the surface as a collection of planar
patches.
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Evolutionary

» Evolutionary optimization for
triangle mesh.
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» Evolutionary optimization for
triangle mesh.

» Linear or quadratic patch
segmentation of range data.
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B-spline knot positioning.

3D Surface Reconstruction 14 /55



Evolutionary

» Evolutionary optimization for
triangle mesh.

» Linear or quadratic patch
segmentation of range data.

» Artificial immune system for
B-spline knot positioning.

> B-spline surface reconstruction.

3D Surface Reconstruction 14/55



Evolutionary

» Evolutionary optimization for
triangle mesh.

» Linear or quadratic patch
segmentation of range data.

» Artificial immune system for
B-spline knot positioning.

> B-spline surface reconstruction.

3D Surface Reconstruction 14/55



Evolutionary

» Evolutionary optimization for
triangle mesh.

» Linear or quadratic patch
segmentation of range data.

» Artificial immune system for
B-spline knot positioning.

> B-spline surface reconstruction.

3D Surface Reconstruction 14/55



Neural networks based 3D recovery
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» A feed-forward neural network is fed with the pixel intensities
of three images to predict the normal of the depicted surface.

» From the normals, the surface can be obtained.
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Neural networks based 3D recovery (2)

Part Shape Complete Range Recovery
Intensity Image Face parts Backprop Reconstruction by range correction
Neural Networks on overlapping parts

I(x,y)
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> A face image is segmented in face parts.

» A neural network is trained to learn the 3D shape PCA
weights from the intensity PCA weights.

> The 3D shape of the parts is then blended to obtain the 3D
shape of the face.
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Fuzzy smoothing

3D Surface Reconstruction

» Post-reconstruction
processing.

» Fuzzy filtering of
patches normals.



Fuzzy smoothing

3D Surface Reconstruction

» Post-reconstruction
processing.

» Fuzzy filtering of
patches normals.
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The regression problem
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The Regression Problem
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» S={(x1,21), ..., (Xm, zn)}, s ERP, 1 <i<n

» data affected by noise
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The Regression Problem

X
» S={(x1,21), ..., (Xm, zn)}, s ERP, 1 <i<n

» data affected by noise

» f:RP — R such that f(x) ~ z = f(x) + € where € is a r.v.
with zero mean and finite standard deviation
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The Regression Problem (2)

» The solution f has to be chosen in order to minimize a given

training error function, L:

> [ = 27:1 E(?(X,‘),Zi)

--------- absolute err.
— squared err.

3D Surface Reconstruction
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Solution by means of basis functions

> approximation as combination
of basis functions
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Neural-based techniques for regression
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Neural-based techniques for regression

v

Generalization ability

> Noise filtering effect

Non-linear model

v

v

Small number of hyperparameters

v

Good trade-off between accuracy and computational efficiency

Smooth solutions

v

» Online learning
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Hierarchical approaches

» The surface reconstruction problem is addressed by a model
composed by a pool of submodels
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Hierarchical approaches

» The surface reconstruction problem is addressed by a model
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The Hierarchical Model

input data
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The Hierarchical Model
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The Hierarchical Model
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The Hierarchical Model
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The Hierarchical Model

3D Surface Reconstruction

. v N S OL N
e e
residual2
hierarchical
ﬁf A'"\ model

25/55



The Hierarchical Model
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The Hierarchical Model
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The Hierarchical Model
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The Hierarchical Model
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hierarchical model
output up to the

/\//\ third layer
\ A
hierarchical
— A'"\ A model

3D Surface Reconstruction

25/55



The Hierarchical Model

/\

hierarchical model
output up to the

/\//\ \ | fourth layer
é‘/: C—I:): El—?:
A
hierarchical
— A'"\ A model

3D Surface Reconstruction

25/55



Outline

Why a hierarchical approach?

3D Surface Reconstruction 26/55



Why a hierarchical approach?

» Face the situations where the standard models are not able to
compute an accurate solution

3D Surface Reconstruction 27/55



Why a hierarchical approach?
» Face the situations where the standard models are not able to

compute an accurate solution

» Create a multi-scale regression

3D Surface Reconstruction 27/55



Why a hierarchical approach?

» Face the situations where the standard models are not able to
compute an accurate solution

» Create a multi-scale regression

» Reduce the configuration time

3D Surface Reconstruction 27/55



Why a hierarchical approach?

v

Face the situations where the standard models are not able to
compute an accurate solution

» Create a multi-scale regression

v

Reduce the configuration time

v

Simplify the choice of the parameters

3D Surface Reconstruction 27/55



Why a hierarchical approach?

Face the situations where the standard models are not able to
compute an accurate solution

v

» Create a multi-scale regression

» Reduce the configuration time
» Simplify the choice of the parameters
» Perform robust solutions
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Hierarchical neural-based models

» RBF
» Hierarchical RBF

> Local approach: fast configuration
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Hierarchical neural-based models

» RBF
» Hierarchical RBF

> Local approach: fast configuration

» SVM
» Hierarchical SVM

> Global approach: computational complexity regardless of the
number of input variables
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Radial Basis Function Neural network
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Radial Basis Function Neural Network

» The output of the model is computed as linear combination of
radial basis functions

» If the RBFs (or units) are normalized spherical Gaussians the
output has the form:

. M 1 (J\x;kn?)
(x)—gwkakme k
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Radial Basis Function Neural Network

» The output of the model is computed as linear combination of
radial basis functions

» If the RBFs (or units) are normalized spherical Gaussians the
output has the form:

f(x) = ZWkak\ﬁ (7%)

» The configuration procedure has to determine:

» The coefficients, wy
» The number of units, M
» The position of each unit, p

» The standard deviation of each
unit, ok
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Hierarchical RBF model

3D Surface Reconstruction 31/55



The HRBF Model

» Input data set: {(x;,z)|z = f(x;) +¢ x5 € RP, 1 < i < N}
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The HRBF Model
» Input data set: {(x;,z)|z = f(x;) +¢ x5 € RP, 1 < i < N}

» HRBF output: f(x) = Z/L::L ai(x; oy)
» stack of hierarchical layers, at a decreasing scale
» o, determines the scale of the /-th layer, with o; > o1

» The network units are equally spaced, Au; o oy

layer / layer [ 4+ 1 layer [+ 2
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Configuration of the parameters

» The weights {w; x} are set proportional to the manifold height
in the grid crossings: wy x = f (k) - AMP
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» The weights {w; x} are set proportional to the manifold height
in the grid crossings: wy x = f(p1 k) - AuP

» Estimation of f(u k) is carried out considering the points that
lie in a neighborhood of y; « called receptive fields (A(pk))
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Multi-scale reconstruction

Choosing o small enough, a single layer will be able to reconstruct
the finest details, but:

3D Surface Reconstruction 34/55



Multi-scale reconstruction
Choosing o small enough, a single layer will be able to reconstruct

the finest details, but:

» wasted units in those regions which feature large scale details

3D Surface Reconstruction 34/55



Multi-scale reconstruction

Choosing o small enough, a single layer will be able to reconstruct
the finest details, but:

» wasted units in those regions which feature large scale details

> lack of points inside A(u ) for a reliable weight estimate

3D Surface Reconstruction 34/55



Multi-scale reconstruction

Choosing o small enough, a single layer will be able to reconstruct
the finest details, but:

» wasted units in those regions which feature large scale details
> lack of points inside A(u ) for a reliable weight estimate

Coarse-to-fine multi-scale approximation: the first layer
reconstructs the large scale details, while the next layers
reconstruct the residuals:

> r1(xm) = r—1(xm) — ai(xm), where ro(xm) = zm
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Multi-scale reconstruction

Choosing o small enough, a single layer will be able to reconstruct
the finest details, but:

» wasted units in those regions which feature large scale details
> lack of points inside A(u ) for a reliable weight estimate

Coarse-to-fine multi-scale approximation: the first layer
reconstructs the large scale details, while the next layers
reconstruct the residuals:

> ri(xm) = r—1(xm) — ai(xm), where ro(xm) = zm
Each new layer features half the scale of the previous one:

> o) =0/-1/2
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Sparse approximation

The Gaussians of a new layer are inserted only where a poor
approximation is obtained from the previous layers.
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Sparse approximation

The Gaussians of a new layer are inserted only where a poor
approximation is obtained from the previous layers.

» The local residual error, R(j ) evaluates the quality of the
approximation over A(u k):
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Sparse approximation

The Gaussians of a new layer are inserted only where a poor
approximation is obtained from the previous layers.

» The local residual error, R(j ) evaluates the quality of the
approximation over A(u k):

Yo 1)l

XmEA
R(,ul,k) — € (Nl,k)

[AQkr,k)]
» When R(u k) is over a given threshold, €, the Gaussian is
inserted.

Layer / Layer I +1 Layer [+ 2
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Initialization

The only a priori information needed is the error threshold e:
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Initialization
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Initialization

The only a priori information needed is the error threshold e:

» The scale parameter of the first layer, o1, can be chosen
proportional to the maximum side length of the bounding box
data

> In this case the center of the Gaussian, ji1,1, will be positioned
at the center of the bounding box

> New layers will be inserted until the training error is under
threshold on the entire domain
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HRBF vs. RBF

3D Surface Reconstruction

RBF (newrb matlab function)

conf time: 776.37 s
units: 341

err mean: 0.0079
err std: 0.0093
rmse: 0.0122

HRBF

conf. time: 16.46 s
units: 6695

err mean: 0.0077
err std: 0.0133
rmse: 0.0154
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Outline

Support Vector Machine for Regression (SVR)
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The Support Vector Machine model for regression

The regression N
f = i ik , X;
has the form: (x) = 2oty ai k(x, xi)
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The Support Vector Machine model for regression

The regression n Gaussian
f(x)= : i G(||x — xill;
has the form: () = iz @i 6llx = xill: o) kernel

» The points x; with a; # 0 are the Support Vectors

The a; results from:  ming H[f] = C - H.[f] + Hs[f]
—

closeness  smoothness

The closeness
is measured
up to €
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SVR configuration parameters

> convex optimization

e, C,o SVM problem
X, Z regression unique solution
? » standard numerical

Sw
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SVR configuration parameters

> convex optimization

e, C,o SVM problem
X, Z regression unique solution
, » standard numerical
sw
> c-tube:

» inside: |aj| =0
» outside: || = C
» border: |a;| € [0, C]

» ¢, C,o set by “trial and
error”
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SVR configuration parameters

> convex optimization

roblem
e, C,o SVM P _ _
X 7 ” regression 7 Q > unique solution
’ » standard numerical
sw
C > e-tube:
.- a;=0C - o
N ! » inside: |a;] =0
.

» outside: || = C
» border: |a;| € [0, C]

» ¢, C,o set by “trial and
error”

. » Very time consuming
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Single scale approach

> In the standard approach, a single kernel function is used
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Single scale approach

> In the standard approach, a single kernel function is used

» The choice of a single kernel function can be questioned

» when the data have different frequency content over the input
domain, single kernel does not produce satisfying results

when o is large when o is small
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Single scale approach

> In the standard approach, a single kernel function is used

» The choice of a single kernel function can be questioned

» when the data have different frequency content over the input
domain, single kernel does not produce satisfying results

- . -
~'-ﬂ' “ammm=®

when o is large when o is small
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Outline

The Hierarchical SVR model
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Parameters setup

» For each HSVR layer, ¢, C, and o have to be defined
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Parameters setup

» For each HSVR layer, ¢, C, and o have to be defined

» The value of o7 is somehow arbitrary, o = %a/,l
> it can be chosen proportional to the size of the input region

> The parameter C; is set proportional to the standard deviation
of the residual:
C x std(r,_l(x,-))

» The only parameter that cannot be estimated from the data
set is the parameter ¢
» this should be proportional to the accuracy required for the
regression
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SVs reduction

» The drawback of this scheme is the total number of SVs used,
that is significantly higher than in standard SVR

> large-o layers have a number of SVs similar to small-o layers
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SVs reduction

» The drawback of this scheme is the total number of SVs used,
that is significantly higher than in standard SVR

> large-o layers have a number of SVs similar to small-o layers

» To reduce the SVs number, for
each level, the points close to
the e-tube’s border are selected

» and used as training set for a
second step of configuration

» The so obtained SVs are those
of the considered layer

» Due to the hierarchical scheme, the error introduced by the
approximation is recovered by the next layers
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Results (1)

The training set is a sampling of the function: sin(27rx4) + X+ u—0.1,0.1]

Target function
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Results (1)

The training set is a sampling of the function: sin(2rx*) 4 x + U[—0.1,0.1]

SVR (¢=0.05, 6 =0.0313, C=20)
e — '¢,~'.\.,7
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Results (1)

The training set is a sampling of the function: sin(2rx*) 4 x + U[—0.1,0.1]

SVR (¢=0.05, 6 =0.0313, C=20)

TR
RN NS

HSVR (¢ = 0.075)

Errmean #SVs

HSVR | 0.0254 1462
HSVR (red.) | 0.0228 206
SVR | 0.0979 163

3D Surface Reconstruction
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Results (2)

Test error
02—
—HSVR
----- HSVR red
0.15 SVR
501
8
0.05

3D Surface Reconstruction
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Results (2)

Test error
02—
—HSVR
----- HSVR red
0.15 SVR
501
8
0.05

» The error introduced by the
reduction step:
> is recovered in the next
layer
» decrease with adding of
new layers

3D Surface Reconstruction

3000
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Z
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0 0.05 0.1 0.15 0.2
HSVR (¢ = 0.075)
o S —HSVR
----HSVR before red.
0.4 --~"HSVR after red.
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HRBF vs. HSVR

HRBF

r e
s e fae

HSVR red.’
Effmean #SVs (tot.)  Time
Online HRBF | 0.0112 14,784 44 s
HSVR | 0.0110 100,448 682 s
HSVR (Red) | 0.0112 11,351  1,104s
o & - = Ha e

3D Surface Reconstruction



Comparison: other methods

Decision tree

Kernel Regression

Comparison among different methods

A HSVRred

. Ridge
regression
W HsVR

Time

| svm

HRBF

@ Kernel
@

: Decision tree
Error regression
[ L

= A
3D Surface Reconstruction
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Outline

Conclusions
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Conclusions

» Neural-based methods can be effectively applied to regression
problems

» Hierarchical structures can improve the accuracy of the
standard methods providing:
» multi-scale solutions
» more robustness
» simplification in hyperparameters selection
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Conclusions (2)

» HRBF

» Fast configuration based on local operations
» Few hyperparameters to select

» Efficient for problems with few input variables

» HSVR

» More accurated thanks the use of different kernels
» Hyperparameters space reduced wrt the standard SVM

» Compact solutions using reduction step
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Future directions

» HRBF

» Real-time implementation

> technology choice (e.g., CUDA GPU)
> new algorithmic contraints

» Extension to non-regular coverage

> incremental learning to recover the residuals
> fine-to-coarse iteration

» Classification

> smoothness hypothesis
» non-homogeneous input variables

» HSVR

» On-line reformulation

> global optimization
> memory to store intermediate data

3D Surface Reconstruction
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