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Surface reconstruction

I The surface reconstruction problem consists in the search of
the surface that best describes a given set of points.

I In computational intelligence field:
I surface reconstruction → function approximation / regression
I point cloud → examples
I surface → generalization
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3D Models

I 3D models are used in many applications

I Archeology / Art

I Medical

I Training

I Entertainment

I Virtual fashion

I Reverse engineering

I ...
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3D reconstruction pipeline

Digitization

Generalization

Fusion

Optimization

3D Model

Refinement

Several features characterize the
reconstruction problem:

I the inherent structure of the
data (e.g., contour) can be
easily incorporated in the
model;

I the topology of the surface
should be known a-priori or
can be obtained from
enough dense data;

I the class of the object:
model-based reconstruction.

3D Surface Reconstruction 6/55



Outline

The surface reconstruction problem

Computational Intelligence approaches

The regression problem

Neural-based techniques for regression

Why a hierarchical approach?

Radial Basis Function Neural network

Hierarchical RBF model

Support Vector Machine for Regression (SVR)

The Hierarchical SVR model

Conclusions

3D Surface Reconstruction 7/55



Self-Organizing Maps

I SOMs provide a smooth mapping of similar examples.

I The topological structure can be used as mesh for
surface representation.

I Particular attention has to be paid to the problem of
distributing the SOM units on the boundary of the
training set.
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Self-Organizing Maps (2)

I Dense SOM can generate unrealistic meshes.
I Pruning and iterative adaptation provide better results:

I removing of unstable vertices;
I subdivision of large triangles and refinement.
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Self-Organizing Maps (3)

I Ruled surfaces are commonly used in
CAD.

I Each 3D points line is transformed in
a 6-dimensional point that describes
the line;

I in that 6D space, the SOM is trained;

I the backward transformation allows to
obtain the ordered set of lines that
defines the surface.

3D Surface Reconstruction 10/55



FOSART

I Clustering provides filtering through local averaging.

I Topology preserving algorithms limits the averaging
only on similar points.

I Fully self-organizing simplified adaptive resonance
theory (FOSART) has been used for filtering a dense
3D point cloud affected by noise.
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Enhanced Vector Quantization

I Extension of the Neural-Gas model:
I optimized for low dimensionality spaces;
I linear scaling and parallelizable.
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Fuzzy k-means

I Use of computational intelligence techniques as
intermediate step.

I Segmentation of normals of the surfaces points through
fuzzy k-means clustering;

I description of the surface as a collection of planar
patches.

3D Surface Reconstruction 13/55



Evolutionary

I Evolutionary optimization for
triangle mesh.

I Linear or quadratic patch
segmentation of range data.

I Artificial immune system for
B-spline knot positioning.

I B-spline surface reconstruction.
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Neural networks based 3D recovery

I A feed-forward neural network is fed with the pixel intensities
of three images to predict the normal of the depicted surface.

I From the normals, the surface can be obtained.
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Neural networks based 3D recovery (2)

I A face image is segmented in face parts.

I A neural network is trained to learn the 3D shape PCA
weights from the intensity PCA weights.

I The 3D shape of the parts is then blended to obtain the 3D
shape of the face.
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Fuzzy smoothing

I Post-reconstruction
processing.

I Fuzzy filtering of
patches normals.
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The Regression Problem

I S = {(x1, z1), ..., (xn, zn)}, xi ∈ RD , 1 ≤ i ≤ n

I data affected by noise

I f̂ : RD → R such that f̂ (x) ≈ z = f (x) + ε where ε is a r.v.
with zero mean and finite standard deviation
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The Regression Problem (2)

I The solution f̂ has to be chosen in order to minimize a given
training error function, L:

I L =
∑n

i=1 E (f̂ (xi ), zi )
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Solution by means of basis functions

I approximation as combination
of basis functions

I coefficients estimation

I distance between target
function and approximation
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Neural-based techniques for regression

I Generalization ability

I Noise filtering effect

I Non-linear model

I Small number of hyperparameters

I Good trade-off between accuracy and computational efficiency

I Smooth solutions

I Online learning
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Hierarchical approaches

I The surface reconstruction problem is addressed by a model
composed by a pool of submodels

I Each submodel realizes the reconstruction at a certain scale

I The regression is obtained as the sum of the output of each
sub-model
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The Hierarchical Model
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Why a hierarchical approach?

I Face the situations where the standard models are not able to
compute an accurate solution

I Create a multi-scale regression

I Reduce the configuration time

I Simplify the choice of the parameters

I Perform robust solutions
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Hierarchical neural-based models

I RBF
I Hierarchical RBF

I Local approach: fast configuration

I SVM
I Hierarchical SVM

I Global approach: computational complexity regardless of the
number of input variables
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Radial Basis Function Neural Network

I The output of the model is computed as linear combination of
radial basis functions

I If the RBFs (or units) are normalized spherical Gaussians the
output has the form:

f (x) =
M∑
k=1

wk
1

σk
√

2π
e

(
− ||x−µk ||

2

2σ2
k

)

I The configuration procedure has to determine:

I The coefficients, wk

I The number of units, M

I The position of each unit, µk

I The standard deviation of each
unit, σk
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The HRBF Model

I Input data set: {(xi , zi ) | zi = f (xi ) + ε, xi ∈ RD , 1 ≤ i ≤ N}

I HRBF output: f̂ (x) =
∑L

l=1 al(x ;σl)
I stack of hierarchical layers, at a decreasing scale
I σl determines the scale of the l-th layer, with σl > σl+1

I The network units are equally spaced, ∆µl ∝ σl
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Configuration of the parameters

I The weights {wl ,k} are set proportional to the manifold height
in the grid crossings: wl ,k = f (µl ,k) ·∆µDl

I Estimation of f (µl ,k) is carried out considering the points that
lie in a neighborhood of µl , k called receptive fields (A(µl ,k))
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Multi-scale reconstruction

Choosing σ small enough, a single layer will be able to reconstruct
the finest details, but:

I wasted units in those regions which feature large scale details

I lack of points inside A(µl ,k) for a reliable weight estimate

Coarse-to-fine multi-scale approximation: the first layer
reconstructs the large scale details, while the next layers
reconstruct the residuals:

I rl(xm) = rl−1(xm)− al(xm), where r0(xm) = zm

Each new layer features half the scale of the previous one:

I σl = σl−1/2
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Sparse approximation

The Gaussians of a new layer are inserted only where a poor
approximation is obtained from the previous layers.

I The local residual error, R(µl ,k) evaluates the quality of the
approximation over A(µl ,k):

R(µl ,k) =

∑
xm∈A(µl,k )

|rl−1(xm)|

|A(µl,k )|
I When R(µl ,k) is over a given threshold, ε, the Gaussian is

inserted.
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Initialization

The only a priori information needed is the error threshold ε:

I The scale parameter of the first layer, σ1, can be chosen
proportional to the maximum side length of the bounding box
data

I In this case the center of the Gaussian, µ1, 1, will be positioned
at the center of the bounding box

I New layers will be inserted until the training error is under
threshold on the entire domain
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HRBF vs. RBF

RBF (newrb matlab function)
conf time: 776.37 s
units: 341
err mean: 0.0079
err std: 0.0093
rmse: 0.0122

HRBF
conf. time: 16.46 s
units: 6695
err mean: 0.0077
err std: 0.0133
rmse: 0.0154
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The Support Vector Machine model for regression

The regression
has the form:

f (x) =
∑n

i=1 αi k(x , xi )

Gaussian

kernel

I The points xi with αi 6= 0 are the Support Vectors

The αi results from: minf H[f ] = C · Hc [f ]︸ ︷︷ ︸+ Hs [f ]︸ ︷︷ ︸
closeness smoothness

The closeness
is measured
up to ε
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SVR configuration parameters

ε,C , σ
X ,Z

−→ SVM
regression

−→ αi

I convex optimization
problem

I unique solution
I standard numerical

sw

I ε-tube:
I inside: |αi | = 0
I outside: |αi | = C
I border: |αi | ∈ [0,C ]

I ε,C , σ set by “trial and
error”

I Very time consuming
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Single scale approach

I In the standard approach, a single kernel function is used

I The choice of a single kernel function can be questioned
I when the data have different frequency content over the input

domain, single kernel does not produce satisfying results
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Parameters setup

I For each HSVR layer, ε, C , and σ have to be defined

I The value of σ1 is somehow arbitrary, σl = 1
2σl−1

I it can be chosen proportional to the size of the input region

I The parameter Cl is set proportional to the standard deviation
of the residual:

Cl ∝ std(rl−1(xi ))

I The only parameter that cannot be estimated from the data
set is the parameter ε

I this should be proportional to the accuracy required for the
regression
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SVs reduction

I The drawback of this scheme is the total number of SVs used,
that is significantly higher than in standard SVR

I large-σ layers have a number of SVs similar to small-σ layers

I To reduce the SVs number, for
each level, the points close to
the ε-tube’s border are selected

I and used as training set for a
second step of configuration

I The so obtained SVs are those
of the considered layer

I Due to the hierarchical scheme, the error introduced by the
approximation is recovered by the next layers
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Results (1)

The training set is a sampling of the function: sin(2πx4) + x + u[−0.1,0.1]

Errmean #SVs

HSVR 0.0254 1462

HSVR (red.) 0.0228 206

SVR 0.0979 163
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Results (2)

I The error introduced by the
reduction step:

I is recovered in the next
layer

I decrease with adding of
new layers
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HRBF vs. HSVR

HRBF HSVR

HSVR red.

Errmean #SVs (tot.) Time

Online HRBF 0.0112 14,784 44 s
HSVR 0.0110 100,448 682 s

HSVR (Red) 0.0112 11,351 1,104 s

3D Surface Reconstruction 47/55



Comparison: other methods
Decision tree Kernel Regression

Ridge Regression
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Conclusions

I Neural-based methods can be effectively applied to regression
problems

I Hierarchical structures can improve the accuracy of the
standard methods providing:

I multi-scale solutions
I more robustness
I simplification in hyperparameters selection
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Conclusions (2)

I HRBF

I Fast configuration based on local operations

I Few hyperparameters to select

I Efficient for problems with few input variables

I HSVR

I More accurated thanks the use of different kernels

I Hyperparameters space reduced wrt the standard SVM

I Compact solutions using reduction step
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Future directions

I HRBF

I Real-time implementation
I technology choice (e.g., CUDA GPU)
I new algorithmic contraints

I Extension to non-regular coverage
I incremental learning to recover the residuals
I fine-to-coarse iteration

I Classification
I smoothness hypothesis
I non-homogeneous input variables

I HSVR

I On-line reformulation
I global optimization
I memory to store intermediate data
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