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What fuzziness is?
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If we separate a group of people assuming that every 

person of height above 1.75 m is TALL :
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0 – 15 C 15-25 C 25 – 38 C 40-100 C
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What fuzziness is?
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If Z is a space of elements, with main 

component Z described by z, such that:

Z = {z}

Thus a fuzzy set  A in  Z is  characterized  

by a membership function A(z), which 

associate each point in z with real number in 

[0,1], along with the elements  A(z) for  z,

which are called degree of membership of 

z in A. 

If the value of  A(z) is closer to one, then a 

greater value of the degree of membership 

of  z to A is assigned.

A={z, (z)}, z  Z, A(z) [0,1]
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(z)

1- (z)
0(z) +(z) 1

Lower MF

Upper MF

Type 1 MF

FOU

Type 2 Interval Fuzzy Set

Intuitionistic Fuzzy Set

Footprint Of 

Uncertainty

 (z)

Other types of Fuzzy Sets



SUBSET А B  z Z  A(z)<B(z)

UNION А  B  z Z  max{A(z), B(z)}

INTERSECTION А B  z Z  min{A(z), B(z)}

Fuzzy sets operations
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EQUITY А B  z  Z  A(z)=B(z)

COMPLEMENT Ã  z Z  Ã(z)=1-A(z)
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Fuzzy sets operations



Types of Fuzzy inferences

•Mamdani Fuzzy Inference

• Sugeno Fuzzy Inference

• ANFIS (Adaptive Neuro-Fuzzy Inference 
System)

• Takagi-Sugeno Neuro-Fuzzy model

• Tsukamoto Fuzzy Inference
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Generalized structure of a Fuzzy 
Inference
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Sugeno Fuzzy Inference: Fuzzification
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FUZZIFICATION

INPUT

The main purpose of the “fuzzification” procedure is to 

transform the crisp input values into fuzzy couples –

linguistic variable of a set and a  corresponding 

membership degree!
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z

CRISP VALUE

1,2,... 5... 100

FUZZY COUPLE

{(z), Z}
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Fuzzy rules 
Base

( ) ( ) ( )
1 1:  z    .......     ( )i i i

s s iR if is Z and z is Z then F z

HOW many fuzzy rules are 

being generated?

FR= NP

N – number of the membership functions 

per input

P – number of the input parameters

1 1 2 2( ) .... s sF z a z a z a z   

Sugeno Fuzzy Inference: Rules base



Sugeno Fuzzy Inference 
mechanism
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Sugeno Fuzzy Inference:  
Defuzzification
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Ne0-fuzzy neuron

• The NEO-Fuzzy Neuron concept enables the possibility to model complex
dynamics with less computational effort, compared to classical Fuzzy-Neural
Networks.

• Unfortunately, its application in purpose to process modeling and control
under uncertainties/ data variations, have not been studied yet.

• In the presented approach, the conventional concept is extended with Type-2
Interval Fuzzy Logic in order to be achieved overall robustness of the
proposed model

• Thus, introducing Type-2 Fuzzy Logic in purpose of handling uncertain
variations is beneficial for modeling different plant processes with complex
dynamics.

• To overcome some deficiencies in the classical gradient learning approach, a
simple heuristic approach is introduced.
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Neo-fuzzy neuron

The NEO-Fuzzy neuron is similar to a 0-th order
Sugeno fuzzy system, in which only one input is
included in each fuzzy rule, and to a radial basis
function network (RBFN) with scalar arguments
of basis functions

In fact the NFN network is a multi-input single-
output system – MISO !

The NEO-Fuzzy neuron has a nonlinear
synaptic transfer characteristic.

The nonlinear synapse is realized by a set of
fuzzy implication rules.

The output of the NEO-Fuzzy neuron is
obtained by the following equation:





m

j

jj wkxxf
1

))(()( 

16



Type-2 Neo-fuzzy network
• The MISO NEO-fuzzy neural network

topology can be represented as:

where x(k) is an input vector of the states in
terms of different time instants.

• Each Neo-Fuzzy Neuron comprises a
simple fuzzy inference which produces
reasoning to singleton weighting
consequents:

• Each element of the input vector is being
fuzzified using Type-2 Interval Fuzzy set:
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Type-2 Neo-fuzzy network

• The fuzzy inference should match the output of the fuzzifier with fuzzy
logic rules performing fuzzy implication and approximation reasoning
in the following way:

• The output of the network is produced by implementing consequence
matching and linear combination as follows:

which in fact represents a weighted product composition of the i-th

input to j-th synaptic weight.
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• To train the proposed modeling structure an unsupervised learning
scheme has been used. Therefore, a defined error cost term is being
minimized at each sampling period in order to update the weights:

• As learning approach of the proposed modeling structure a simple
heuristic backpropagation approach , where the scheduled parameters
depend on the signum of the gradient and defined learning rate, is
adopted:
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• The learning rate is local to each synaptic weight and it is adjusted by 
taking into account the extent of the gradient in the current and the past 
sample period as:

where the constants are: a=1.2, b=0.5 and ηmin=10-3, ηmax=5.

The main advantage of the proposed approach is that the information about
the gradient is neglected, which accelerates significantly the learning
process!
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Numerical examples
• To test the modeling capabilities of the proposed NEO-fuzzy neural

network, a numerical experiments in prediction of two common chaotic
time series (Mackey-Glass a and Rossler )are investigated.

• The Rossler chaotic time series are described by three coupled first-
order differential equations:

a=0.2; b=0.4; c=5.7 and initial conditions x0=0.1; y0=0.1; z0=0.1

• The Mackey-Glass (MG) chaotic time series is described by the following 
time-delay differential equation:

a=0.2; b=0.1; C=10; initial conditions x0=0.1 and τ= 17s.
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Numerical examples

Modeling of Mackey-Glass and Rossler chaotic time series and 

the estimated error in the noiseless case.
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Numerical examples

Modeling of Mackey-Glass and Rossler chaotic time series and 

the estimated error in the case of 5% additive noise and 5% FOU.
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Numerical examples

Modeling of Mackey-Glass chaotic  and Rossler time series and the 

estimated error in the case of 5% additive noise and 10% FOU.
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Numerical examples

Mean Squared Errors

Time 
step

Without 
noise
10-4

With noise 
and 5% 

FOU,
10-4

With noise 
and

10% FOU,
10-4

50 4.70 4.66 4.62
100 2.86 2.70 2.64
150 3.37 3.90 2.95
200 8.07 7.47 6.97
250 39.88 22.33 21.82
300 81.71 72.81 70.13

Comparison of the proposed heuristic 

algorithm to the classical Gradient 

Descent.
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MIMO NEO-fuzzy network

MIMO Neo-Fuzzy Network
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The outputs of the MIMO NEO-Fuzzy Network are
obtained on the last fifth layer:

On the third layer the obtained membership
degrees are multiplied by two different group
weight coefficients wji(k) and vji(k). On the fourth
layer are computed two groups of functions:

The MIMO NEO-Fuzzy Network is five-layer
structure.
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Learning of MIMO NEO-fuzzy network

• In the MIMO Neo-Fuzzy Network is need to be adjusted only one group
of parameters – the consequents.

• The defined error cost terms are being minimized at each sampling
period in order to update the synaptic weights:

• The updating rules in which w and v are vectors of the trained 
parameters: the synaptic links in the consequent part of the rules and η
is an adaptive learning rate:
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Learning of MIMO NEO-fuzzy network

• To demonstrate the ability of the proposed MIMO NEO-Fuzzy
Network it is chosen to model the following nonlinear system:

where u1(k) and u2(k) are the system inputs, y1(k) and y3(k) are the
outputs. Two benchmark chaotic systems (Mackey-Glass and
Rossler chaotic time series) are used as inputs:
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Numerical Examples

0 50 100 150 200 250 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

y1 ymod1 y2 ymod2

Steps RMSE1 MSE1 RMSE2 MSE2

50 2.0e-4 5.5e-8 6.1e-5 3.7e-9

100 1.8e-4 4.8e-8 4.6e-5 3.4e-9

150 5.5e-5 3.7e-8 3.4e-5 2.8e-9

200 4.2e-5 3.1e-8 3.1e-5 2.2e-9

250 3.8e-5 2.4e-8 2.7e-5 1.8e-9

300 3.5e-5 1.9e-8 2.1e-5 1.3e-9

Model validation by using Mackey-Glass 

chaotic time series as inputs
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0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y1 ymod1 y2 ymod2

Steps RMSE1 MSE1 RMSE2 MSE2

50 1.69e-4 2.85e-8 4.8e-5 2.32e-9

100 1.62e-4 2.6e-8 4.97e-5 3.1e-9

150 1.58e-4 2.5e-8 5.6e-5 6.2e-9

200 9.8e-3 9.7e-7 2.7e-4 7.5e-8

250 6.4e-3 4.1e-5 1.5e-4 2.1e-7

300 3.8e-3 1.5e-6 1.2e-4 4.4e-6

Model validation by using Rossler 

chaotic time series as inputs

Numerical Examples
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