Neo-fuzzy neural networks for
modeling of complex systems

Yancho Todorov, Ph.D.

yancho.todorov(@ieee.org



What fuzziness is?

If we separate a group of people assuming that every
person of height above 1.75 m is TALL :

tall tall
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u=0,3
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What fuzziness is?

COLD cooL WARM
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COLD cooL WARM
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Fuzzy Set

If Z is a space of elements, with main
component Z described by z, such that:

Z ={z}

Thus a fuzzy set A in Z is characterized
by a membership function u,(z), which
associate each point in z with real number in
[0,1], along with the elements x ,(z) for z,
which are called degree of membership of
Zin A,

If the value of i ,(2) is closer to one, then a

greater value of the degree of membership
of zto Ais assigned.

A={Z, M2)}, Z € Z, pa(z)€ [0,1]
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Other types of Fuzzy Sets

Type 2 Interval Fuzzy Set

Footprint Of
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Uncertainty

Type 1 MF
FOU Lower MF
Intuitionistic Fuzzy Set
1- v(2) N\ @
0<p(z) +v(z2)<1

o //// N



Fuzzy sets operations

SUBSET e AeB-o>VzeZ:p(z)<pp(z)

UNION AUBY z e Z: maxiu,(z), pg(z)}

I
0.

INTERSECTION ANBY z e Z: minfu,(z), ng(2)}



Fuzzy sets operations

EQUITY A=Bo>VzeZ:p,(z)=p(2)

COMPLEMENT A—>VzeZ:piz)=1-u,(z)




Types of Fuzzy inferences

® Mamdani Fuzzy Inference

® Sugeno Fuzzy Inference

® ANFIS (Adaptive Neuro-Fuzzy Inference
System)

® Takagi-Sugeno Neuro-Fuzzy model

® Tsukamoto Fuzzy Inference



Generalized structure of a Fuzzy
Inference

INFERENCE
FUZZIFICATION MECHANISM DEFUZZIFICATION

Fuzzy Rules
BASE




Sugeno Fuzzy Inference: Fuzzification

J7.¢4) -
FUZZY COUPLE
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The main purpose of the “fuzzification” procedure is to
transform the crisp input values into fuzzy couples —
linguistic variable of a set and a corresponding

membership degree! 1



Sugeno Fuzzy Inference: Rules base

RW :if z; is Z,) and.......zs is Z" then F (2)

F(z) =az +a,Z, +....+a,Z,

HOW many fuzzy rules are
being generated?

FR= NP

N — number of the membership functions
per input

P — number of the input parameters



Sugeno Fuzzy Inference
mechanism

y2 (Zz)
max {u(z;), u(zy)}}

AR

min {u(z,), u(zy)}}

1 (2,)

F(2)
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Sugeno Fuzzy Inference:
Defuzzification

OUPUT

DEFUZZIFICATION /,[y (U) — ILIlj (U) * ll’lZJ (U) L g :Llpj (U)

!

2, F@u®,w)
ZFR (')y(U)




Neo-fuzzy neuron

The NEO-Fuzzy Neuron concept enables the possibility to model complex
dynamics with less computational effort, compared to classical Fuzzy-Neural
Networks.

Unfortunately, its application in purpose to process modeling and control
under uncertainties/ data variations, have not been studied yet.

In the presented approach, the conventional concept is extended with Type-2
Interval Fuzzy Logic in order to be achieved overall robustness of the
proposed model

Thus, introducing Type-2 Fuzzy Logic in purpose of handling uncertain
variations is beneficial for modeling different plant processes with complex
dynamics.

To overcome some deficiencies in the classical gradient learning approach, a
simple heuristic approach is introduced.

15



v'The NEO-Fuzzy neuron is similar to a o-th order
Sugeno fuzzy system, in which only one input is
included in each fuzzy rule, and to a radial basis
function network (RBFN) with scalar arguments
of basis functions

v'In fact the NFN network is a multi-input single-
output system — MISO !

v The NEO-Fuzzy neuron has a nonlinear
synaptic transfer characteristic.

v'The nonlinear synapse is realized by a set of
fuzzy implication rules.

v The output of the NEO-Fuzzy neuron is
obtained by the following equation:

Neo-fuzzy neuron

M.
My
Mo

00 = 3 a1, ()W,
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Type-2 Neo-fuzzy network

® The MISO NEO-fuzzy neural network
topology can be represented as:

y(k) = T (x(k))

where x(k) is an input vector of the states in
terms of different time instants.

® Each Neo-Fuzzy Neuron comprises a
simple fuzzy inference which produces
reasoning to singleton weighting
consequents:

R(I) if X IS A(I) then fi (Xi)

® Each element of the input vector is being
fuzzified using Type-2 Interval Fuzzy set:

2 — _
X — Gjj M @S Oy = Oy
ﬂij(Xi)z_eXp( > Jj :{ J j j

i M 85 O} = O
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Type-2 Neo-fuzzy network

® The fuzzy inference should match the output of the fuzzifier with fuzzy
logic rules performing fuzzy implication and approximation reasoning
in the following way:

n
_ _
M~ = i1 Hij

*_ A A
M~ = :

*
Hi~ = i Hi

® The output of the network is produced by implementing consequence
matching and linear combination as follows:

y(k) = %leﬂ(ﬁij * ) Fi (%) = %Z:=1(/_1ij * 4 F) W

which in fact represents a weighted product composition of the it
input to j synaptic weight.
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Learning Algorithm

® To train the proposed modeling structure an unsupervised learning
scheme has been used. Therefore, a defined error cost term is being
minimized at each sampling period in order to update the weights:

E=¢/5 and &(k) =y, (k)= (k)

® As learning approach of the proposed modeling structure a simple
heuristic backpropagation approach , where the scheduled parameters
depend on the signum of the gradient and defined learning rate, is
adopted:

Wy (K +1) = w; (k) + Aw; (k) = w; (k) + 77 (k)sign ( aaVl\fij((kk)) j

oE(k) oE(k) oy(k) oy (k)

00 - sn{ S5 |- sion{ LG |=nosa] 00 £10
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Learning Algorithm

® Thelearning rate is local to each synaptic weight and it is adjusted by
taking into account the extent of the gradient in the current and the past
sample period as:

min ( a77; (K —1), 77max ) if AE; (k)AE;(k-1) >0
1; (K) max(bﬂij (k —1), 7pin ) if AE;(k)AE;(k-1) <0
17 (k =1) if AE; (k)AE;(k-1)=0

where the constants are: a=1.2, b=o.5andn,,,,=1073, N,,,.,=5-

The main advantage of the proposed approach is that the information about
the gradient is neglected, which accelerates significantly the learning
process!
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Numerical examples

® To test the modeling capabilities of the proposed NEO-fuzzy neural
network, a numerical experiments in prediction of two common chaotic
time series (Mackey-Glass a and Rossler )are investigated.

The Rossler chaotic time series are described by three coupled first-
order differential equations:

dx dy az )
pra A R dt_b+z(x C)

a=0.2; b=0.4; c=5.7 and initial conditions x =0.1; y_=0.1; z_=0.1
The Mackey-Glass (MG) chaotic time series is described by the following
time-delay differential equation:

x(i) + ax(i - s)

XU+D) = e i -9) - bx)

a=0.2; b=0.1; C=10; initial conditions x,=0.1 and t= 17s.
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QUTPUT

Numerical examples
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Modeling of Mackey-Glass and Rossler chaotic time series and
the estimated error in the noiseless case.
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OUTPUT

Numerical examples

yob

I
ymod pred err0r|

ol SRR R RS PR PP PP PP PR PPEREEL PEPEEPPPRRY | B SRR
D & (1

=
>
o
-
=)
O

Sk

Qs v esers s b v iners e bbvcv oo pperecv oo vt vy st e S sy g o]
02 i 1 ] i ! 15 i ] I i !
0 50 100 150 200 280 300 0 50 100 150 200 250 300
TIME STEPS TIME STEPS

Modeling of Mackey-Glass and Rossler chaotic time series and
the estimated error in the case of 5% additive noise and 5% FOU.
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Numerical examples
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Modeling of Mackey-Glass chaotic and Rossler time series and the
estimated error in the case of 5% additive noise and 10% FOU.
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Numerical examples

Mean Squared Errors

: With noise | With noise
V\Qgi‘::t and 5% and
Step . FOU, 10% FOU,
1074 1074
5O 4.70 4.66 4.62
100 2.86 2.70 2.64
150 3-37 3-90 2.95
200 8.07 7.47 6.97
250 | 39.88 22.33 21.82
300 | 81.71 72.81 70.13
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300

Comparison of the proposed heuristic
algorithm to the classical Gradient

Descent.
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MIMO NEO-fuzzy network

The MIMO NEO-Fuzzy Network is five-layer
structure.

On the third layer the obtained membership
degrees are multiplied by two different group
weight coefficients wj(k) and v;(k). On the fourth
layer are computed two groups of functions:

FL 00 = 241, ()W, 6,00 =3, (X,

The outputs of the MIMO NEO-Fuzzy Network are
obtained on the last fifth layer:

p
p
Yor = D Fyii (X) Yo = Zl“GWj (X)
=1 i=

MIMO Neo-Fuzzy Network
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Learning of MIMO NEO-fuzzy network

® In the MIMO Neo-Fuzzy Network is need to be adjusted only one group
of parameters — the consequents.

® The defined error cost terms are being minimized at each sampling
period in order to update the synaptic weights:

E,=6%12 £,=Y,,(K)=9..(K) E =512 & =y,(K)-9.K)

® The updating rules in which w and v are vectors of the trained
parameters: the synaptic links in the consequent part of the rules and n
is an adaptive learning rate:

(k) = 0.1t (x ()|

v, (k+1) =, (K)+ Av=v, (K) +77[%$)) w, (K +2) = w, (k) + Aw = w, (k) + n[%WEl((:))j

—v, (k) +7e(K) 1, (x, () = w; (k) + 72 (k) 1 (; (K))
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Learning of MIMO NEO-fuzzy network

® To demonstrate the ability of the proposed MIMO NEO-Fuzzy
Network it is chosen to model the following nonlinear system:

2 —
0 =—2ED o5y, (k-1)
yi (k—-1)+1

2
yi (k=1 Fuy(k-1)

k) =
L T Yo Yo

2 R
o) =—28D 0.3y,
y3(k-1)+1

2
V4(k)=— y?é(k -3 > 1050, (k —1)
yi (k=D +y5(k-1)+yz(k-1)

where ul(k) and u2(k) are the system inputs, y1(k) and y3(k) are the
outputs. Two benchmark chaotic systems (Mackey-Glass and
Rossler chaotic time series) are used as inputs:
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Model validation by using Mackey-Glass

chaotic time series as inputs

Numerical Examples
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Numerical Examples
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Model validation by using Rossler
chaotic time series as inputs

30



IEANRKEOU
FOR NYOUR AT T ERNTIORNE

N



